MODELAGEM E DELIMITAÇÃO DE PROCESSOS EROSIVOS EM VERTENTES

Irani dos Santos – CEHPAR - irani@lactec.org.br Masato Kobiyama, Eng. Sanitária e Ambiental – UFSC - kobiyama@ens.ufsc.br

1 INTRODUÇÃO

A erosão ocorre sempre quando a força de cisalhamento excede a força de resistência dos materiais. No caso da erosão hídrica, há distintos mecanismos físicos, incluindo: ação direta do salpico das gotas de chuva; ação do escoamento superficial do tipo hortoniano e dunniano; ação do escoamento subsuperficial em ductos e túneis (associados à atividade biogênica, às descontinuidades lito-pedológicas e ao fissuramento dos solos); excesso de pressão hídrica dos poros nas faces de exfiltração do escoamento subsuperficial; ação gravitacional direta, ou movimentos de massa, especialmente quando as pressões hídricas dos poros positivas se tornam críticas dentro do regolito (COELHO NETO, 1998).

Dado a complexidade e ao grande número de mecanismos físicos relacionados aos processos erosivos, a identificação e o mapeamento destes processos tornam-se uma importante ferramenta no planejamento ambiental. Esta forma alternativa de abordagem da erosão consiste na modelagem para identificação e delimitação espacial dos diferentes processos erosivos atuantes na bacia hidrográfica. A partir da identificação dos diferentes processos erosivos torna-se possível o estabelecimento de umbrais (*thresholds*) de erosão, isto é, a determinação de regiões onde podem ocorrer cada tipo de processo e conseqüentemente o limite espacial (fronteira) entre as mesmas. Este limite espacial (umbral) entre os diferentes processos erosivos é denominado de "umbral de erosão".

O presente trabalho apresenta a delimitação espacial dos diferentes processos erosivos que potencialmente ocorrem na bacia do rio Pequeno (104 km²), localizada na região metropolitana de Curitiba.

2 METODOLOGIA

Através de dados detalhados do modelo numérico de terreno (MNT) e de equações que descrevem fisicamente os processos hidrológicos e erosivos, torna-se possível fazer a delimitação espacial dos diferentes processos erosivos que ocorrem na bacia. Processos hidrológicos como escoamento superficial hortoniano e escoamento superficial por saturação (tipo Dunne *-saturation excess overland flow*), combinados com características geomorfológicas do local como declividade e área de contribuição da encosta de montante, permitem o estabelecimento dos umbrais de erosão com base em algumas características do solo local.

As equações permitem mapear os limites (umbrais) das regiões onde o solo não atinge condições saturadas (erosão difusa); de solo saturado (erosão por lixiviação (*seepage*) e ravinamento por escoamento superficial); e regiões sujeitas a deslizamentos de solo.

Considerando-se algumas suposições simplificadoras, o umbral de saturação do solo pode ser determinado, sendo que o solo será saturado quando o valor da área de contribuição por unidade de contorno, A/c=a, também chamado de índice geomorfológico, for maior ou igual ao valor do lado direito da equação (1), conforme apresentado por Dietrich et al. (1992) e Montgomery & Dietrich (1989 e 1994):

$$a \ge \frac{T}{R} \cdot M(1)$$

onde *a* é a área de contribuição por unidade de contorno (m); *T* é a transmissividade do solo (m^2/s) ; *R* é o escoamento lateral subsuperficial do solo saturado, equivalente a precipitação não interceptada (m/s); e *M* é o gradiente hidráulico, sendo considerado igual a declividade do terreno (m/m).

O procedimento para obter a equação (1) é igual aos de Beven & Kirby (1979) e O'Loughlin (1986) para estimar a distribuição da umidade superficial do solo em bacias hidrográficas. Esta equação indica que, quanto maior a precipitação (R), menor o valor a necessário para gerar área saturada. Também mostra uma relação log-linear positiva entre a e M.

Plotando-se em um gráfico valores do índice geomorfológico, a, contra valores de M, para cada *pixel* no MNT, pode-se traçar uma linha a partir dos parâmetros hidrológicos T/R, sobre a qual os pontos apresentam condição saturada. Nas regiões abaixo deste limite, ou seja, que não se encontram saturadas à superfície, apresentam potencial para desenvolver somente erosão do tipo laminar ou difusa.

Nas regiões saturadas a precipitação incidente irá provocar, juntamente com o escoamento de retorno, o escoamento superficial por saturação que potencialmente pode provocar erosão superficial. Nas regiões saturadas podem ocorrer erosões subsuperficiais do tipo Dunne (*seepage*), quando as condições de coesão do solo permitem a liquefação.

A inicialização de canais de erosão (ravinas) provocada por escoamento superficial ocorre quando a resistência mecânica do solo, representada pela tensão de cisalhamento crítica (τ_c) é excedida.

Pode-se considerar que em bacias de clima úmido, relevo suave e com cobertura vegetal, ocorre o predomínio do escoamento superficial dunniano em detrimento do escoamento superficial hortoniano (SANTOS, 2001) e que, mesmo que seja rápido, o escoamento superficial em locais com cobertura vegetal pode ser considerado laminar, conforme Dunne & Dietrich (1980) e Montgomery & Dietrich (1994).

Pode-se assim estimar a área crítica por unidade de contorno necessária para a ocorrência de erosão por escoamento superficial por saturação:

$$a_{cs} \ge \frac{2 \cdot \tau_c^3}{k \cdot \upsilon \cdot \rho_a^3 \cdot g^2 \cdot R \cdot M^2} + \frac{T \cdot M}{R} \qquad (2)$$

onde a_{cs} é a área crítica por unidade de contorno necessária para a ocorrência de erosão por escoamento superficial por saturação (m); τ_c é a tensão de cisalhamento crítica (N/m²); *k* é a constante ligada à geometria da superfície (adimensional); υ é a viscosidade cinemática (m²/s); ρ_a é a densidade da água (=1000 kg/m³); e g é a aceleração da gravidade (=9,8 m/s²).

A constante k está relacionada com o número de Reynolds e seu significado físico é discutido em Morre e Foster (1990) e Gerits et al. (1990).

A equação (2) é expressa graficamente na FIGURA 1. Este limite, denominado de umbral de erosão linear, indica que valores posicionados acima e a direita desta linha apresentam erosão linear.

Um dos modelos mais simples e mais utilizados para determinar a instabilidade de vertentes é o modelo da vertente infinita (MONTGOMERY & DIETRICH, 1994). Unindose hidrologia de vertente com um modelo de instabilidade de vertente, chega-se na seguinte equação para obter a área crítica para deslizamento:

$$a_{cd} \ge \frac{z \cdot K \cdot \operatorname{sen} \beta \cdot \cos \beta}{R} \cdot \left[\frac{C}{\rho_a \cdot g \cdot z \cdot \cos^2 \beta \cdot \tan \phi} + \frac{\rho_s}{\rho_a} \cdot \left(1 - \frac{\tan \beta}{\tan \phi} \right) \right] (3)$$

onde a_{cd} é a área crítica por unidade de contorno necessária para a ocorrência de erosão por deslizamento (m); z é a espessura do solo (m); K é a condutividade hidráulica saturada (m/s); é a declividade da superfície do solo (grau); C é a coesão efetiva do solo (N/m²); ϕ é o ângulo interno de fricção do solo (grau); ρ_s é a densidade global do solo saturado (kg/m³).; e ρ_a é a densidade da água (kg/m³).

A equação (3) é válida somente quando,

$$\tan\beta \ge \left(\frac{\rho_s - \rho_a}{\rho_s}\right) \cdot \tan\phi \ge \frac{\tan\phi}{2} (4)$$

Dados de campo indicam que $(\rho_s \cdot \rho_a)/\rho_s$ é aproximadamente 0.5 (DIETRICH et al., 1992). Então, admitindo-se que C = 0 e considerando-se que tan $\beta = M$ a equação (3) pode ser escrita como:

$$a_{cd} \ge 2 \cdot \left(1 - \frac{M}{\tan \phi}\right) \cdot \frac{T \cdot M}{R}$$
(5)

Através de dados detalhados do modelo numérico do terreno e das equações 1, 2 e 5 é possível delimitar na paisagem regiões com predominância dos diferentes processos de produção e transporte de sedimentos e dos diferentes mecanismos de inicialização de canais, ou seja, é possível fazer a delimitação espacial dos diferentes processos erosivos que ocorrem em bacias hidrográficas.

O presente trabalho utilizou o modelo UMBRAL (SANTOS, 2001) para a simulação dos processos erosivos. As variáveis necessárias para simulação do modelo foram "precipitação de projeto" e os seguintes parâmetros geotécnicos e hidrológicos de solo: ângulo interno de fricção; transmissividade do solo; constante ligada à geometria da superfície; tensão de cisalhamento crítica. O modelo utilizou também informações distribuídas espacialmente e obtidas a partir das características geomorfológicas, sendo estas a distribuição do índice geomorfológico e da declividade.

Para estimativa do valor médio do ângulo interno de fricção (ϕ) foram reunidos os dados dos 18 ensaios de cisalhamento direto realizados em amostras representativas dos solos da bacia. Foi estabelecida a envoltória média de resistência, resultando em um ângulo interno de fricção de 28,14° e coesão de 13,6 kPa. A tensão de cisalhamento crítica foi obtida a partir dos dados de coesão do solo, utilizando uma equação construída a partir de dados apresentados por Komura (1982).

A precipitação de projeto (R) foi estimada a partir dos dados históricos de precipitações diárias da estação pluviométrica Fazendinha (02549017), localizada na exutória da bacia, do período de 07/1964 a 07/2000, adotando-se o valor médio das máximas diárias anuais. Para a transmissividade do solo (T) foi adotado o valor obtido na calibração do TOPMODEL para a bacia de estudo e para a constante relacionada com a geometria da superfície (k) o mesmo valor adotado por Dietrich et al. (1992).

O modelo utilizou também informações distribuídas espacialmente e obtidas a partir das características geomorfológicas, sendo estas a distribuição do índice geomorfológico e a distribuição da declividade. Os mapas de declividade e de índice geomorfológico foram obtidos a partir do modelo numérico do terreno com *pixel* de 40m, construído a partir de cartas topográficas em escala 1:10.000.

Na aplicação do modelo UMBRAL para a bacia, utilizou-se cinco parâmetros com valores médios para a bacia (TABELA 1).

Parâmetro	Descrição	Valor adotado	Unidade
ϕ	Ângulo interno de fricção	28	grau
Т	Transmissividade do solo	25,2	$m^2 dia^{-1}$
K	Constante ligada à geometria da superfície	10000	Adimensional
$ au_c$	Tensão de cisalhamento crítica	25	N m ⁻²
R	Precipitação de projeto	0,07	m dia⁻¹

TABELAELA 1 – PARÂMETROS DE ENTRADA DO MODELO UMBRAL

3 RESULTADOS

A FIGURA 1 mostra o gráfico resultante da simulação do modelo UMBRAL para a bacia do rio Pequeno, contendo os umbrais de delimitação dos diferentes processos erosivos em função da declividade e da área de contribuição unitária. A FIGURA 2 mostra o mesmo gráfico juntamente com os pontos que representam os *pixels* do MNT da bacia estudada. Pode-se perceber uma grande concentração de pontos no entorno da declividade 0,1 m/m e com área de drenagem unitária próxima de 100 m²/m.

Da simulação do modelo UMBRAL é possível estabelecer um zoneamento dos processos erosivos, espacializando os resultados apresentados na Figura 2. Para isso os *pixels* foram classificados segundo a região erosiva, resultando no mapa apresentado na FIGURA 3.

O UMBRAL permitiu a delimitação dos processos erosivos atuantes na bacia e apresentou resultados bastante coerentes com as características ambientais. Isso indica que os parâmetros, que possuem representatividade física, foram estimados de forma correta. Indica também que o modelo é adequado para estabelecer umbrais de erosão e a delimitação espacial dos processos erosivos.

A erosão difusa atinge 17,3% da área total e está presente em toda a extensão da bacia, localizada nos divisores das microbacias internas; a erosão por lixiviação atinge 65,3% da área total, está mais presente nas partes inferior e média da bacia, junto às áreas saturadas de relevo plano; a erosão linear atinge 8,3% da área total e está presente em toda

a extensão da bacia, localizada ao longo da rede de drenagem; e a erosão por deslizamento atinge 9,1% da área total e está mais presente no alto curso do rio Pequeno, localizada junto às maiores declividades.

FIGURA 2 – UMBRAIS DE EROSÃO E *PIXELS* DO MNT DA BACIA DO RIO PEQUENO

FIGURA 3 – MAPA DE PROCESSOS EROSIVOS

4 CONSIDERAÇÕES FINAIS

O modelo UMBRAL mostrou um grande potencial de aplicabilidade no planejamento ambiental, pois permite discutir e orientar as ações antrópicas sobre o meio físico com base no entendimento dos processos naturais. Portanto, é uma ferramenta de grande utilidade prática para o diagnóstico e análise ambiental, bem como para subsidiar projetos de ordenamento territorial.

REFERÊNCIAS

BEVEN, K. J.; KIRKBY, M. J. A physically based, variable contributing area model of basin hydrology. **Hydrological Sciences Bulletin**, 24, p. 43-69, 1979.

COELHO NETO, A. L. A abordagem geo-hidroecológica: um procedimento analíticointegrativo fundamentado na geomorfologia, hidrologia e geoecologia. In: FÓRUM GEO-BIO-HIDROLOGIA: ESTUDO EM VERTENTES E MICROBACIAS HIDROGRÁFICAS, 1., 1998, Curitiba. **Anais...** Curitiba: UFPR, 1998. p. 26-29.

DIETRICH, W. E. et al. Erosion thresholds and land surface morphology. *Geology*, v. 20, p. 675-679, August 1992.

GERITS, J. J. P. et al. Overland flow and erosion. In. ANDERSON, M. G.; BURT, T. P. (Ed.). **Process studies in hillslope hydrology**. J. Wiley, 1990. p. 173-214.

KOMURA, S. **Hidráulica de sedimentos** *I*. Tokyo: Morikita Publishing Co., 1982. 339 p. (em japonês).

MONTGOMERY, D. R.; DIETRICH, W. E. Source areas, drainage density, and channel initiation. **Water Resources Research**, v. 25, n. 8, p. 1907-1918, August 1989.

MONTGOMERY, D. R.; DIETRICH, W. E. Landscape dissection and drainage area-slope thresholds. In: KIRKBY, M. J. (Ed.). **Process models and theoretical geomorphology**. J. Wiley, 1994. p. 221-246.

MORRE, I. D.; FOSTER, G. R. Hydraulics and overland flow. In. ANDERSON, M. G.; BURT, T. P. (Eds.). **Process studies in hillslope hydrology**. J. Wiley, 1990. p. 215-254.

O'LOUGHLIN, E. M. Prediction of surface saturation zones in natural catchments by topographic analysis. **Water Resources Research**, v. 22, n. 5, p. 794-804, May 1986.

SANTOS, I. **Modelagem geobiohidrológica como ferramenta no planejamento ambiental: estudo da bacia hidrográfica do rio Pequeno, São José dos Pinhais** - *PR*. Curitiba, 2001. 93 p. Dissertação (Mestrado em Ciência do Solo) – Setor de Ciências Agrárias, Universidade Federal do Paraná.