

ANÁLISE MORFOMÉTRICA DA BACIA HIDROGRÁGICA DO CAETÉ, ALFREDO WAGNER/SC

VESTENA, L. R¹.

¹⁻ Pós-Graduando em Engenharia Ambiental pela Universidade Federal de Santa Catarina – UFSC; Professor do Departamento de Geografia da Universidade Estadual do Centro-Oeste – UNICENTRO. Email: *lvestena@unicentro.br*

CHECCHIA, T^2 .

²-Pós-Graduanda em Engenharia Ambiental pela Universidade Federal de Santa Catarina – UFSC. E-mail: *tatiane@ens.ufsc.br*

KOBIYAMA, M³.

³⁻Professor do Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Santa Catarina – UFSC. E-mail: *kobiyama@ens.ufsc.br*

RESUMO

A análise da morfometria fluvial da bacia hidrográfica do Caeté, município de Alfredo Wagner, região serrana do Estado de Santa Catarina, por meio dos aspectos lineares, areais e hipsométricos constituíu-se no objetivo do presente estudo. A compreensão da dinâmica dos processos hidrogeomorfológicos, além de contribuir para fundamentar o diagnóstico, fundamenta ações que visem um manejo racional do uso da terra. Os procedimentos metodológicos pautaram-se na aplicação das quatro leis de Horton (1945), da estimativa dos índices tais como comprimento, área e forma da bacia, densidade de drenagem, rios e segmentos da bacia e a relação entre o comprimento do rio principal e a área da bacia, e da elaboração da curva hipsométrica. A bacia hidrográfica do Caeté possui aproximadamente 163 km² e apresenta grandeza de 5^a ordem, segundo a hierarquização de Strahler (1952). Os resultados obtidos para as quatro leis de Horton (1945), lei de número de canais, lei de comprimento de canais, lei de declividade e lei de área da bacia de canais mostraram-se válidas para a bacia. A forma da bacia contribui para a concentração do escoamento fluvial, o que favorece a ocorrência de enchente e inundações. Na bacia existem grandes diferenças altimétricas, representada por 1.293 metros, assim como entre a altitude mediana (902,6 m) e a altitude média (1.126,5 m). Os cursos fluviais são encachoeirados, com grandes gradientes, favorecendo os processos de transporte de sedimentos fluviais. As altas declividades das vertentes e dos cursos fluviais favorecem o rápido aumento da velocidade do escoamento e propicia o aparecimento de enxurradas que provocam periodicamente desastres nas áreas ribeirinhas e encostas íngrimes. Por fim destaca-se que a análise morfométrica forneceu fundamentos para a compreensão e entendimento dos processos morfogenéticos identificados na bacia hidrográfica do Caeté.

Palavras-chave: Morfometria; Hidrogeomorfologia; Bacia de drenagem; Rio Caeté.

INTRODUÇÃO

Na bacia hidrográfica do Caeté (BHC) no município de Alfredo Wagner – SC, o relevo é fortemente dissecado com encostas íngremes, onde atividades de uso inadequadas do solo tornam mais susceptíveis as ocorrências dos processos erosivos. Neste contexto a análise morfométrica da BHC assume relevante importância na compreensão da dinâmica dos processos hidrogeomorfológicos, além de contribuir para fundamentar o diagnóstico e ações que visem um manejo racional do uso da terra.

A bacia hidrográfica, recorte espacial adotado, além de ser a unidade territorial básica para o planejamento e o gerenciamento dos recursos hídricos definida pela Lei

Federal N.º 9.433, de 8 de janeiro de 1997, que instituiu a Política Nacional de Recursos Hídricos (BRASIL, 1997), é uma unidade hidrogeomorfológica como destacam, dentre outros, Silveira (2000), e Coelho Netto (1995).

O objetivo pautou-se na análise da morfometria fluvial, ou seja, na analise linear, areal e hipsométrica, por meio da aplicação das quatro leis de Horton, da estimativa dos índices tais como comprimento, área e forma da bacia, densidade de drenagem, rios e segmentos da bacia e a relação entre o comprimento do rio principal e a área da bacia, e da elaboração da curva hipsométrica da bacia hidrográfica do Caeté.

ÁREA DE ESTUDO

A BHC (aproximadamente 163 km²) no município de Alfredo Wagner, localiza-se região serrana do Estado de Santa Catarina, entre as latitudes 27° 52' 43'' S e 27° 41' 49'' S e longitudes 49° 20' 45'' W e 49° 11' 17'' W (Figura 1). O Rio Caeté é formado pelos Rios Perito e Santo Anjo com suas nascentes em altitudes de 1140 e 1600 metros, respectivamente, na formação geológica Serra Geral. Da junção do Rio Caeté com o Rio Adaga nasce o Rio Itajaí do Sul, na área urbana deste município.

Figura 1 - Localização da bacia hidrográfica do Caeté

O clima na BHC está sob o domínio da zona extratopical, o que resulta em temperaturas com caráter mesotérmico – temperaturas anuais médias entre 16°C e 20°C, inverno frio e verão amenizado pelas altitudes (Monteiro, 1963). A geologia na bacia é bem diversificada. Para Checchia et al. (2004) a geologia na bacia do Rio Caeté é constituída praticamente por camadas horizontais de arenito, siltitos, argilitos e folhelhos pertencentes à Bacia do Paraná. Os solos estão associados principalmente a Cambissolos e Neossolos, apresentam fertilidade natural muito baixa. Os solos das encostas possuem

estrutura frágil e são facilmente erodíveis, enquanto os das chapadas são extremamente ácidos (Sachet, 1994).

METODOLOGIA

Os trabalhos iniciaram-se com o levantamento bibliográfico e cartográfico. A base cartográfica foi montada a partir de carta topográfica, escala 1:50.000, ano 1980, do Instituto Brasileiro de Geografia e Estatística – IBGE. O *software* Spring 4.2 desenvolvido na Divisão de Processamento de Imagens (DPI) do Instituto Nacional de Pesquisas Espaciais (INPE) foi utilizado para a integração das informações em um banco de dados geográficos e para a obtenção dos parâmetros morfométricos.

A rede fluvial foi hierarquizada de acordo com Strahler (1952) que eliminou a subjetividade da classificação proposta por Horton (1945). A metodologia adotada para a análise morfométrica da BHC seguiu a proposta de Horton divulgada na literatura, principalmente nos trabalhos de Horton (1945), Strahler (1957 e 1964), Christofoletti (1980), e Zãvoianu (1985).

Na Tabela 1 expõe-se resumidamente os princípios básicos das quatro leis de Horton (1945), isto é, lei de número de canais, lei de comprimento de canais, lei de declividade e lei de área da bacia de canais. Além disso, a curva hipsométrica da bacia foi elaborada com base em Villela & Mattos (1975), para representar a variação da elevação dos vários terrenos.

RESULTADOS E DISCUSSÕES

A BHC hierarquizada apresentou grandeza de 5^a ordem. Os resultados obtidos para as leis de Horton (1945) são mostrados na Tabela 2. O valor médio do coeficiente da Taxa de Bifurcação (R_b) é 4,0. Este valor é altamente consistente, considerando que o resultado esperado deve estar entre 3 e 5. A média da taxa de comprimento (R_L) é de 2,3 para a BHC estando assim dentro dos parâmetros aceitáveis. A maior diferença observada no cálculo da R_L é nos segmentos de ordem 1 e 4, onde se têm valores mais distantes de 2 (1,6 e 3,3, respectivamente).

De toda forma a média da *Rs* é igual a 2,7 sendo moda 1,4. O valor médio da Taxa de Área para a BHC exposta na Tabela 2 é igual a 4,6. Pode-se dizer que se tem um valor relativamente constante entre as ordens, como prediz a Lei de Horton.

Leis de Horton	Par âmetro	Equ ação	Legenda	OBS
Lei do Número de Canais	$R_b =$ taxa de bifurcação	$R_b =$	N_w é o número de segmento da ordem analisada. N_{w+1} é o número de segmento da ordem seguinte.	O número de segmentos de ordens sucessivamente inferiores de uma bacia dada tende a formar uma progressão geométrica, que começa com o único segmento de ordem mais elevado e cresce segundo uma taxa constante de bifurcação.
Lei do Comprimento de Canais	$R_L =$ taxa de comprimento	$R_L =$	L_w é o comprimento médio da ordem analisada. L_{w+I} é o comprimento médio dos canais da ordem seguinte.	O comprimento médio dos segmentos de ordens sucessivos tende a formar uma progressão geométrica cujo primeiro termo é o comprimento médio dos segmentos de primeira ordem e tem por razão uma relação de comprimento constante.
Lei da Declividade de Canais	$R_s =$ taxa de declividade média	$R_s =$	S_w é a declividade média da ordem analisada. S_{w+I} é a declividade média da ordem seguinte.	Em uma determinada bacia há uma relação definida entre a declividade média dos canais de certa ordem e a dos canais de ordem imediatamente superior, que pode ser expressa por uma série geométrica inversa, na qual o primeiro termo é a declividade média dos canais de primeira ordem e a razão é a relação entre os gradientes dos canais.
Lei da Área da Bacia de Canais	$R_a =$ taxa de área	$R_a =$	\overline{A}_w é a área média das bacias de cada canal da ordem analisada.	As áreas médias das bacias de segmentos de canais de ordem sucessivos tendem a formar uma progressão geométrica cujo primeiro termo é a área média das bacias de primeira ordem e a razão de incremento constante é a taxa de área.

Tabela 1 – Resumo das leis de Horton (1945)

Tabela 2 - Resultados da aplicação das Leis de Horton para a Bacia do Rio Caeté

Ordem (w)	Nw	log ₁₀ Nw	Rb	Lw media m	log ₁₀ Lw	R _L	Sw media	log ₁₀ Sw	Rs	Área total km ²	Aw media km ²	log ₁₀ Aw	Ra
1°	252	2,40	4,3	718,3	2,9	1,6	0,194	-0,7	1,4	92,40	0,4	-0,4	4,4
2°	58	1,76	4,8	1126,3	3,1	1,9	0,135	-0,9	1,4	92,56	1,6	0,2	4,2
3°	12	1,08	3,0	2122,4	3,3	2,2	0,099	-1,0	2,3	80,70	6,7	0,8	4,3
4°	4	0,60	4,0	4698,9	3,7	3,3	0,042	-1,4	5,5	115,84	29,0	1,5	5,7
5°	1	0,00		15666,0	4,2		0,008	-2,1		163,76	163,8	2,2	
Média			4,0			2,3			2,7				4,6

NOTA: Nw é o número de canais; Rb é a taxa de bifurcação; Lw é o comprimento médio; RL é a taxa de comprimento; Sw é a declividade média; Rs é a taxa de declividade; Aw é área média; e Ra é a taxa de área.

Na Figura 2 expõe-se os resultados obtidos para as quatro leis de Horton, lei de número de canais, lei de comprimento de canais, lei de declividade e lei de área da bacia de canais (Figura 2). Isto permite concluir que as leis de Horton mostraram-se válidas para a BHC.

Figura 2 - Número de ordem (w) e o logaritmo do número de canais (Nw), do comprimento médio de canais (Lw), da declividade dos canais (Sw) e da área média das bacias de canais (Aw) para a bacia hidrográfica do Caeté

A forma da BHC contribui significativa para a ocorrência de enchente na bacia do Rio Caeté, representado pelo valor do índice de compacidade, do fluxo fluvial (Tabela 3). A densidade de rios e a densidade de drenagem revelaram que a bacia apresenta em média 1,5 km/km², e 1,9 segmentos de rio/km², respectivamente, o que caracteriza uma área bem drenada. As declividades na BHC são acentuadas, estando as maiores declividades principalmente nas nascentes do Rio Santo Anjo. As declividades acima de 45% representam aproximadamente 20% da área total da bacia.

Na Figura 3 verifica-se uma grande diferença altimétrica na bacia, representada por 1.293 metros, a cota de maior altitude é de 1.773 metros e a de menor 480 metros, diferença essa bem significativa. A altitude média e a mediana da bacia são de 902,6 e 1.126,5 metros, respectivamente.

A grande diferença altimétrica reflete em cursos fluviais encachoeirados, com grandes gradientes, favorecendo os processos de transporte de sedimentos fluviais. O Rio Caeté possui uma extensão de 27193 metros e uma amplitude altimétrica de 1114 metros entre sua nascente principal a foz, o que corresponde a um gradiente de canal de 0,041 km/km, que confirma a existência de cursos fluviais com um grande número de corredeiras, saltos e cachoeiras, bem como, pelo elevado número de nascentes. As densidades de segmentos da bacia, independente do método apresentaram valores expressivos, mostrando um grande número de cursos fluviais na BHC.

Índi	Valores Obtidos			
1. Área (A)		163,865 km ²		
2. Perímetro (P)		62,470 km		
3. Comprimento da bacia (<i>L</i>)		15,750 km		
4. Forma da bacia ou índice de	1 366			
compacidade	P/\sqrt{A}	1,500		
5. Fator de forma	$Kf = A/L^2$	0,661		
6. Densidade de drenagem (Dd)	$Dd = L_t / A$	1,949 km/km ²		
7. Densidade de rios (Dr)	$Dr = N_t / A$	1,538 rios/km ²		
	a) $F_{S} = N$	1.000		
8. Densidade de segmentos da	t /A	1,990 segmentos/km		
bacia (F _S)	b) $F_{S} =$	2.635 segmentos/km ²		
	0,694Dd ²	2,000 005.100.000, Mil		
9. Comprimento total dos cursos	319,320 km			
10. Número total de segmentos, Strahler	327 segmentos			

Tabela 3 – Índices da BHC

NOTA: (1) O comprimento da bacia foi obtido considerando o comprimento do rio principal da foz até sua nascente, mais à distância em

linha reta de sua nascente até o divisor de água (ver Christofoletti, 1980); e (2) N_t é o número total de rios.

Figura 3 - Curva hipsométrica da bacia hidrográfica do Caeté

A paisagem é representada por escarpas, interrompidas por patamares, na qual a dinâmica da água proporcionou um maior desenvolvimento de perfis. Quanto aos tipos de modelado, a área de estudo apresenta intensa dissecação do terreno com patamares e vales estruturais. São encontrados na bacia modelados de dissecação do tipo montanhoso, escarpado, colinoso e morraria. Este tipo de modelado apresenta forte incisão dos vales junto às encostas íngremes tornando-se mais susceptíveis a movimentos de massa. Quanto à forma das encostas resultantes de processos erosivos e/ou deposicionais no tempo, ela pode apresentar-se, de maneira geral, de quatro formas: côncavas (curvas de nível direcionadas para cima), convexas (curvas de nível direcionadas para baixo), retilíneas e escarpadas (curvas de nível paralelas e retilinizadas entre si). Os vales em "V" são caracterizados pelo sistema de drenagem encaixada, com escoamento superficial de alta velocidade e energia, resultando em processo de erosão inicialmente laminar, podendo evoluir à erosão por sulcos e voçorocas.

CONSIDERAÇÕES FINAIS

Os índices morfométricos formam uma base consistente de dados que facilitam a compreensão do relacionamento entre as propriedades físicas da rede de drenagem e suas propriedades dinâmicas, permitindo bons resultados de análise para o monitoramento dos processos hidrológicos da BHC.

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL. Lei Federal N.º 9.433, de 8 de Janeiro de 1997. Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos. *Diário Oficial* [República Federativa do Brasil], Brasília, 9 jan. 1997.

CHECCHIA, Tatiane et al. Análise preliminar da evolução dos deslizamentos no vale do Rio Caeté, Alfredo Wagner, SC. In: ENCONTRO SUL AMERICANO DE GEOMORFOLOGIA, 1., 2004, Santa Maria. *Geomorfologia e riscos ambientais*. Santa Maria: UFSM, 2004. p. 01 - 14. CD-ROM.

CHRISTOFOLETTI, A. Geomorfologia. São Paulo: Ed. Edgard Blucher, 1980.

COELHO NETTO, A. L. Hidrologia de encosta na interface com a Geomorfologia. In: GUERRA, A. J. T.; CUNHA, S. B da (Orgs.) *Geomorfologia: uma atualização de bases e conceitos*. Rio de Janeiro: Bertrand Brasil, 1995, p. 93-148.

HORTON, R.E. Erosional development of streams and their drainage basins: a hydrophysical approach to quantitative morphology. *Geol Soe. Am. Bull.*, v.56, n.3, p.275-370, 1945.

MONTEIRO, C. A. F. *O clima da Região Sul. Geografia Regional do Brasil.* Tomo I. Cap. III. Biblioteca Brasileira, IBGE, 1963.

SACHET, Z. P. Levantamento edafoclimatológico da microbacia do Rio Caeté. *Documento Técnico n. 20.* Florianópolis: FAPEU. 1994.

SILVEIRA. A. L. L. da. Ciclo Hidrológico e Bacia Hidrográfica. In: TUCCI, C. E. M. *Hidrologia Ciência e Aplicação*. Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul (ABRH), 2000, p. 35-51.

STRAHLER, Arthur N. Quantitative analysis of watershed Geomorphology. *Am. Geophys. Union Trans.* 38 (6): 913-920, 1957.

STRAHLER, Arthur N. Quantitative geomorphology of drainage basins and chanel networks. In: CHOW, V. T. (ed.). *Handbook of applied hydrology*. New York: Mc-Graw-Hill, 1964.

VILLELA, S. M. & MATTOS, A. *Hidrologia aplicada*. São Paulo: McGraw-Hill do Brasil, 1975.

ZÃVOIANU, I. *Morphometry of drainage basins*. New York: Elsevier Science Publisher, 1985.